IMRAM

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

東北大学
多元物質科学研究所

LAST UPDATE 2025/04/20

  • 研究者氏名
    Researcher Name

    芥川智行 Tomoyuki AKUTAGAWA
    教授 Professor
  • 所属
    Affiliation

    東北大学 多元物質科学研究所
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

    マテリアル・計測ハイブリッド研究センター ハイブリッド材料創製研究分野 
    Materials-Measurement Hybrid Research Center, Hybrid Material Fabrication
  • 研究キーワード
    Research Keywords

    機能性分子材料
    分子集合体
    物性化学

    Functional Molecular Materials
    Molecular Assembly
    Physical Properties
研究テーマ
Research Subject
ダイナミックな分子集合体の分子物性科学
Molecular Science of Dynamic Molecular Assemblies

研究の背景 Background of the Research

有機材料の合成的な設計自由度の高さは、さまざまな機能の発現を可能にする。導電性、光応答性、磁性、強誘電性など、分子および分子集合体の精密設計により、無機物では実現が困難な革新的な材料創製が可能となる。これらの材料のさらなる性能向上には、構造と物性の深い理解が不可欠であり、有機材料の物性科学は機能性材料科学において極めて重要な研究分野と位置づけられる。

The high degree of synthetic design freedom of organic materials enables the expression of a wide variety of functions. The precise design of molecules and molecular assemblies, including conductivity, photoresponse, magnetism, and ferroelectricity, enables the creation of innovative materials that are difficult to realize with inorganic materials. A deep understanding of the structure and physical properties of organic materials is essential to further improve the performance of these materials, and the physical properties science of organic materials is positioned as an extremely important research field in functional materials science.

研究の目標 Research Objective

有機分子の高度な設計自由度を活用し、有機合成化学、錯体化学、物性化学の手法を駆使して、導電性・磁性・発光・強誘電性・強弾性の多機能を併せ持つ分子性材料の電子-スピン構造と動的運動自由度を精密に制御し、その集合状態における機能発現を最適化することで、革新的なマルチファンクショナル材料の創出を目指す研究を展開している。

By utilizing the high degree of design freedom of organic molecules and making full use of synthetic organic chemistry, complex chemistry, and condensed matter chemistry, our research aims to create innovative multifunctional materials by precisely controlling the electron-spin structure and dynamic degrees of freedom of molecular materials with multifunctional properties such as conductivity, magnetism, light emission, ferroelectricity, and strong elasticity, and by optimizing their functional expression in their aggregate states. The research aims to create innovative multifunctional materials by precisely controlling the electron-spin structure and dynamic degrees of freedom of molecular materials with multifunctional properties such as luminescence, ferroelectricity, and elasticity.

研究図Figures

Fig.1. Molecular ferroelectrics of simple benzene derivative bearing -CONHCnH2n+1 chains. Ferroelectric polarization and electric filed hysteresis. Fig.2. Molecular assembly helical fibers based on simple organic salts of halo-substituted anilinium and tartrate via intermolecular hydrogen-bonding interactions. Fig.3. Molecular-based gas adsorption materials with gated channel unit within the crystals. The properties could be controllable through the h i l d i

論文発表 / Publications

Bull. Chem. Soc. Jpn. 94, 1400–1420 (2021), Chem. Commun. 57, 8378–8401 (2021), Chem. Commun. 58, 11898-11912 (2022), J. Am. Chem. Soc. 147, 7983−7992 (2025), J. Am. Chem. Soc. 146, 8557–8566 (2024), J. Am. Chem. Soc. 146, 22699−22710 (2024), J. Am. Chem. Soc. 146, 5224–5231 (2024).